Representative Selection: See all by looking at a few

Outline

Introduction and Motivation
 Unsupervised Representative Selection
 Supervised Representative Selection
 Related issues on Social Networks

Motivation: why we bother to select a subset of data?

Popular Belief: data are very redundant, and could be represented well by a relative small subset.

the selected instances are expected to be more interpretable

Reduce the memory cost of storing data and improve computation efficiency

Obtain better performance in classification with a discriminative subset selected

Unsupervised Representative Selection

Video Summarization

Digital Recognition

Graco Sweet Slumber Boppy Noggin Nest Sound Machine Head Support

Cloud b Twilight Constellation Night Light

Braun ThermoScan Lens Filters

Aquatopia Bath Thermometer Alarm

-

Britax EZ-Cling Sun Shades

TL Care Organic Cotton Mittens

Regalo Easy Step Walk Thru Gate

VTech Comm Audio Monitor

Infant Optics Video Monitor

A high-probability set of size k = 10 selected for the "safety" category

Recommendation System

Low-Rankness based method: Rank Revealing QR factorization

Idea:

the data come from a low-rank model and try to find a subset of instances that capture as much of the whole data set as possible in a projection sense.

DEFINITION 1. (The CSSP) Given a matrix $A \in \mathbb{R}^{m \times n}$ and a positive integer k, pick k columns of A forming a matrix $C \in \mathbb{R}^{m \times k}$ such that the residual

$$\|A - P_C A\|_{\xi}$$

is minimized over all possible $\binom{n}{k}$ choices for the matrix C. Here, $P_C = CC^+$ denotes the projection onto the k-dimensional space spanned by the columns of C and $\xi = 2$ or F denotes the spectral norm or Frobenius norm.

DEFINITION 2. (The RRQR factorization) Given a matrix $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ and an integer k $(k \le n)$, assume partial QR factorizations of the form:

$$A\Pi = QR = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix},$$

it satisfies

$$\begin{aligned} \frac{\sigma_k(A)}{p_1(k,n)} &\leq \sigma_{min}(R_{11}) &\leq \sigma_k(A) \\ \sigma_{k+1}(A) &\leq \sigma_{max}(R_{22}) &\leq p_2(k,n)\sigma_{k+1}(A) \end{aligned}$$

$C = A \Pi_k$ is the approximation of representative subset

Dictionary learning based method

Kmedoids: assume that data are distributed around centers, called medoids, so each data point is represented by a medoid.

$$\min_{D,a} \sum_{i=1}^{n} \|x_i - Da_i\|_2^2, \quad \text{s.t.} \|a_i\|_0 = 1, \ D \in X$$

It can be solved by two steps iteratively:

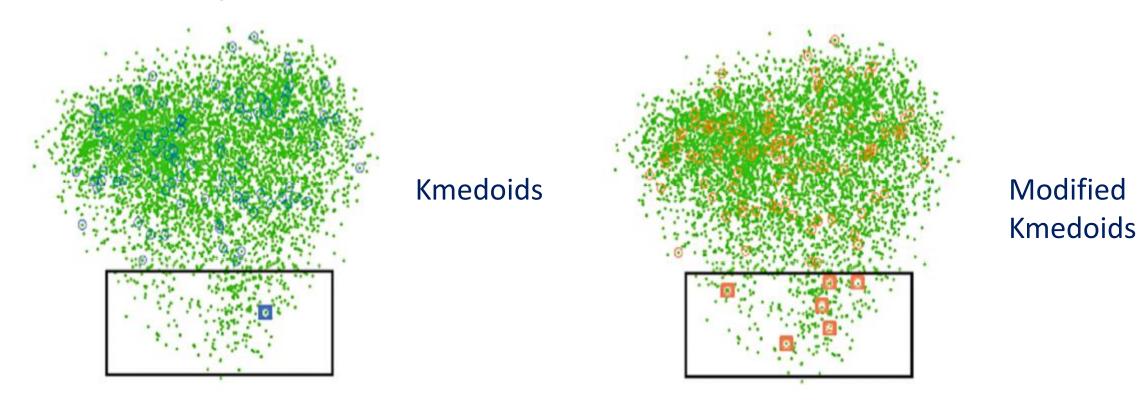
$$\min_{a} \sum_{i=1}^{n} \|x_i - Da_i\|_2^2, \quad \text{s.t.} \|a_i\|_0 = 1,$$

$$\min_{D} \sum_{i=1}^{n} \|x_i - Da_i\|_2^2, \quad \text{s.t. } D \in X,$$

Kmedoids algorithm finds representative data mainly in high density region, so can't represent the global distribution of the dataset.

We can relax the only one representative constraint to allow that a data point can be a linear combination of multiple representatives.

$$\min_{D,A} \|X - DA\|_2^2 + \lambda \|A\|_1, \quad \text{s.t. } D \in X, \ A \ge 0$$



Sparse Modeling Representative Selection(SMRS):

By taking the original dataset as a dictionary, representatives are selected to approximately express all the data by linear combination with a row sparsity constraint.

$$\min \|\boldsymbol{C}\|_{1,q} \quad \text{s.t.} \quad \|\boldsymbol{Y} - \boldsymbol{Y}\boldsymbol{C}\|_F \leq \varepsilon, \ \boldsymbol{1}^\top \boldsymbol{C} = \boldsymbol{1}^\top$$

 $\| \boldsymbol{C} \|_{1,q} \triangleq \sum_{i=1}^{N} \| \boldsymbol{c}^{i} \|_{q}$ encourages fewer non-zero rows, or the number of representatives

Representative is ranked by the norm of its corresponding row in coefficient matrix C , representative that has many nonzero elements with large values gets higher rank.

Representative Selection with Structured Sparsity:

To encourage dissimilar samples to be selected, add regularizers for diversity and localitysempittory ing of SMRS:

Decremental SMRS:

Perform iterative sample elimination, re-ranking, and re-weighting to remove the outliers and put different weights on data points according to their relevance scores.

$$\min_{\mathbf{B}} \left(\frac{1}{2} \| (\mathbf{Y} - \mathbf{Y} \ \mathbf{B}) \ \mathbf{W} \|^2 + \lambda \ \| \mathbf{B} \|_{1,q} \right)$$

Where, $\| (\mathbf{Y} - \mathbf{Y} \ \mathbf{B}) \ \mathbf{W} \|^2 = \sum_{i=1}^{N_{current}} W_{ii}^2 \ \| \mathbf{y}_i - \mathbf{Y} \ \mathbf{b}_i \|^2$

In every iteration:

1. Calculate the coefficient matrix B and compute the L2 norms of the rows of B as relevance scores of data points.

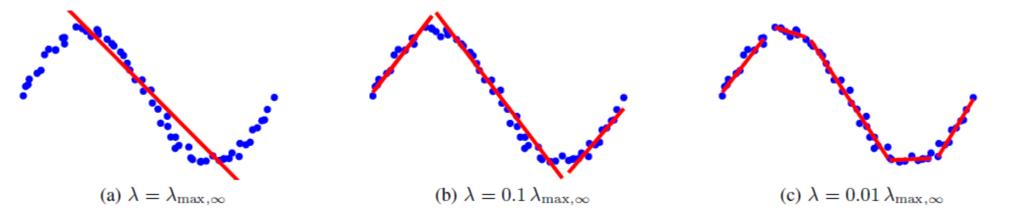
- 2. Remove the data points with m lowest scores from Y.
- 3. Compute a new diagonal weight matrix W such that W(i,i)=relevance score of data point i.

Dissimilarity based method

Goal:

Assume we have a source set $X = \{x_1, ..., x_M\}$ and a target set $Y = \{y_1, ..., y_N\}$, and we can get the pairwise dissimilarity d_{ij} indicating how well x_i represents y_j , i.e. the smaller the value of d_{ij} , the better x_i represents y_j . Arrange it into a matrix $D \in R^{M \times N}$. Our goal is to select a subset of X that efficiently represents Y.

There, X and Y may not necessarily be the same type. For example, X can be a set of models and Y be a set of data points, in which case we select a few models that well represent the collection of data points.



Dissimilarity based method

Define $Z \in \mathbb{R}^{M \times N}$ as the indication matrix and if x_i is the representative of y_j , $z_{ij} = 1$; else $z_{ij} = 0$. z_i is the i-th row of Z. Convex relaxation:

$$\min_{\{z_{ij}\}} \lambda \sum_{i=1}^{M} \mathrm{I}(\|\boldsymbol{z}_{i}\|_{p}) + \sum_{j=1}^{N} \sum_{i=1}^{M} d_{ij} z_{ij} \qquad \min_{\{z_{ij}\}} \lambda \sum_{i=1}^{M} \|\boldsymbol{z}_{i}\|_{p} + \sum_{j=1}^{N} \sum_{i=1}^{M} d_{ij} z_{ij}$$

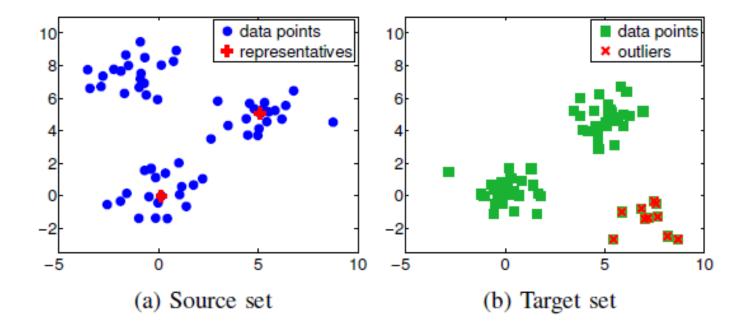
s.t.
$$\sum_{i=1}^{M} z_{ij} = 1, \ \forall j; \ z_{ij} \in \{0,1\}, \ \forall i,j, \qquad \text{s.t.} \quad \sum_{i=1}^{M} z_{ij} = 1, \ \forall j; \ z_{ij} \ge 0, \ \forall i,j,$$

To deal with outlier, we introduce a new variable $e_j \in [0, 1]$ associated with each y_j indicating whether y_i is a outlier or not.

$$\min_{\{z_{ij}\},\{e_j\}} \lambda \sum_{i=1}^M \|\boldsymbol{z}_i\|_p + \sum_{j=1}^N \sum_{i=1}^M d_{ij} z_{ij} + \sum_{j=1}^N w_j e_j$$

s. t.
$$\sum_{i=1}^M z_{ij} + e_j = |1, \ \forall j; \ z_{ij} \ge 0, \ \forall i, j; \ e_j \ge 0, \ \forall j, \forall j \in [n]$$

Dissimilarity based method

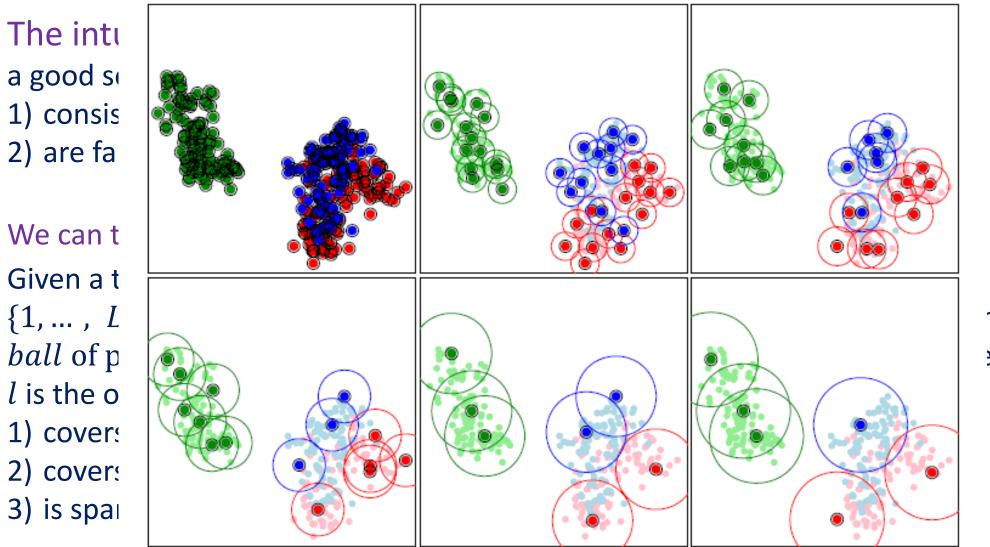


Supervised Representative Selection

For data points with labels, we want to select representatives from all categories, which can be used for classification.

Here, we focus on the problems in the context of K-NN and SVM.

Representative Selection for K-NN

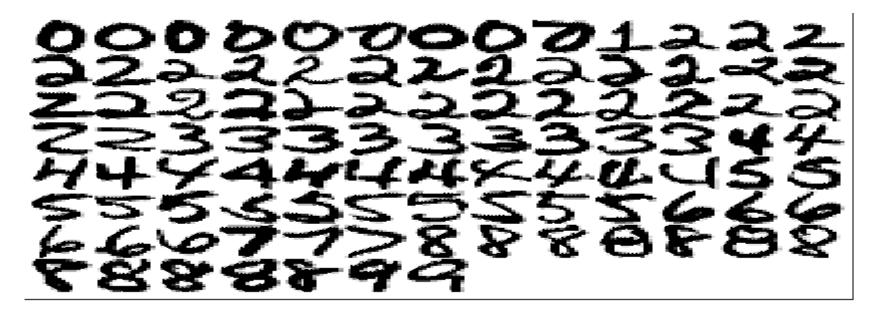


 $y_n \} \in$ ne the ϵ et for class It is actually a integer program problem:

$$\begin{aligned} \min_{\alpha_{j}^{(l)},\xi_{i},\eta_{i}} &\sum_{i} \xi_{i} + \sum_{i} \eta_{i} + \lambda \sum_{j,l} \alpha_{j}^{(l)} \quad \text{s.t.} \end{aligned}$$
(a)
$$\begin{aligned} \sum_{j: \mathbf{x}_{i} \in B(\mathbf{x}_{j})} \alpha_{j}^{(y_{i})} &\geq 1 - \xi_{i} \quad \forall \mathbf{x}_{i} \in \mathcal{X}, \end{aligned}$$
(b)
$$\begin{aligned} \sum_{\substack{j: \mathbf{x}_{i} \in B(\mathbf{x}_{j}) \\ l \neq y_{i}}} \alpha_{j}^{(l)} &\leq 0 + \eta_{i} \quad \forall \mathbf{x}_{i} \in \mathcal{X}, \end{aligned}$$

$$\begin{aligned} \alpha_{j}^{(l)} \in \{0, 1\} \quad \forall j, l, \quad \xi_{i}, \eta_{i} \geq 0 \quad \forall i \end{aligned}$$

Where, $\alpha_i^{(l)} \in [0,1]$ indicate whether we choose x_j to be a representative of class l.



100 representatives selected from USPS handwritten digits dataset

Representative Selection for SVM

For SVM, the data points near the class boundary is more informative, and the nonboundary instances are considered redundant and do not affect the decision surface.

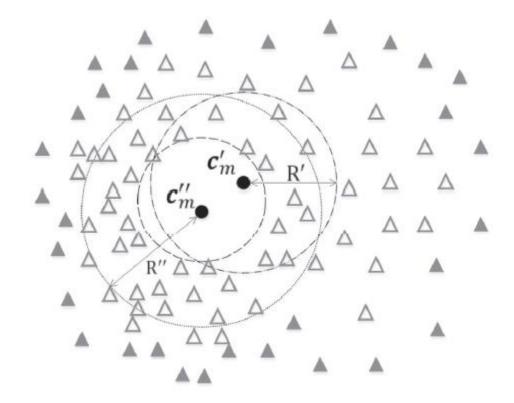
Goal:

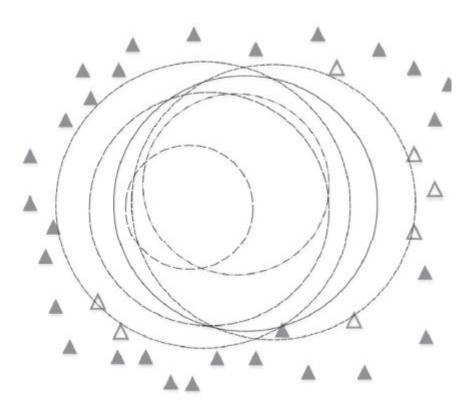
Select representatives that preserve class boundary.

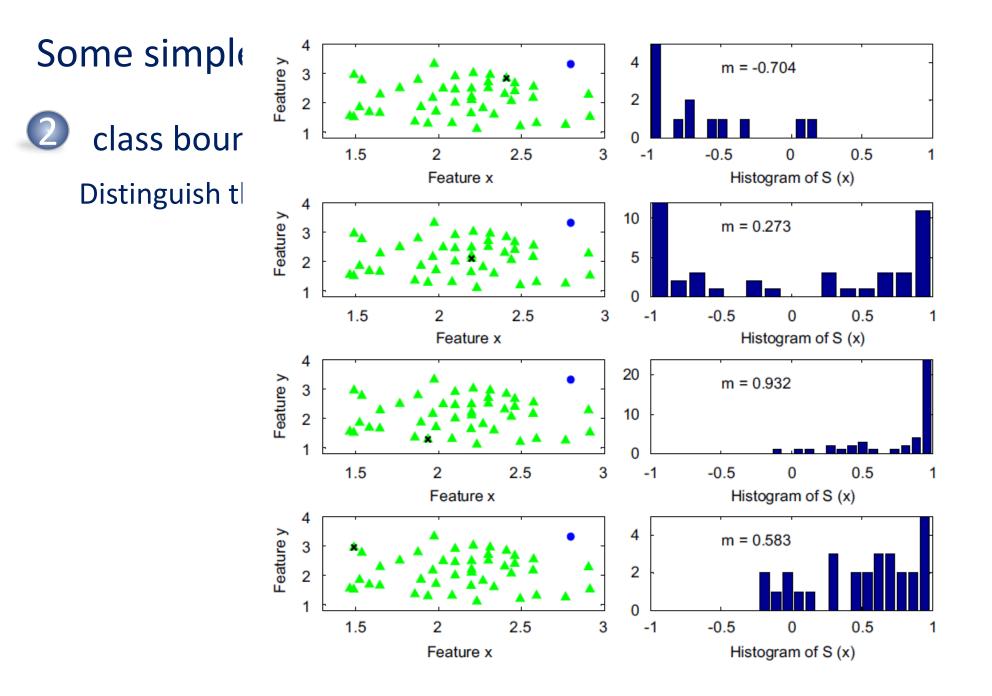
Some simple approaches:

Shell Extraction algorithm

Assume that each class distribution is spherical

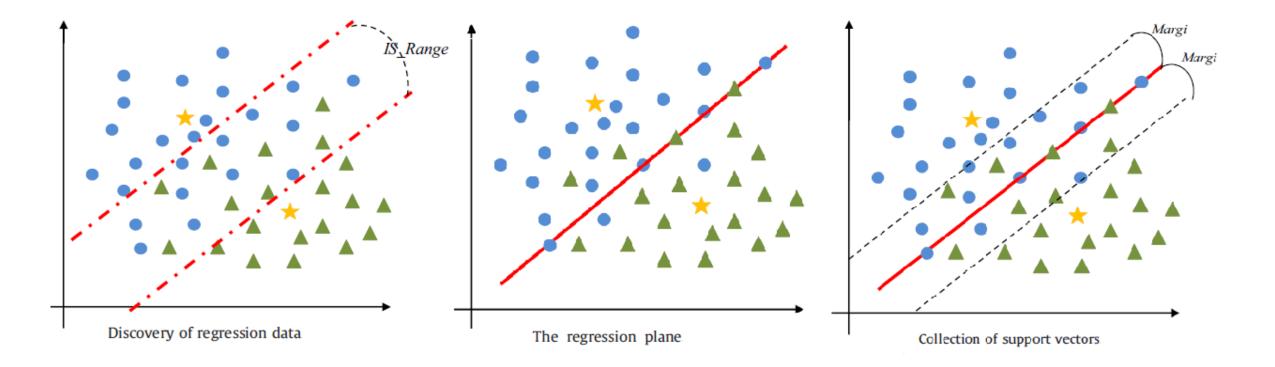






Some simple approaches:

③ Support Vector Oriented Selection

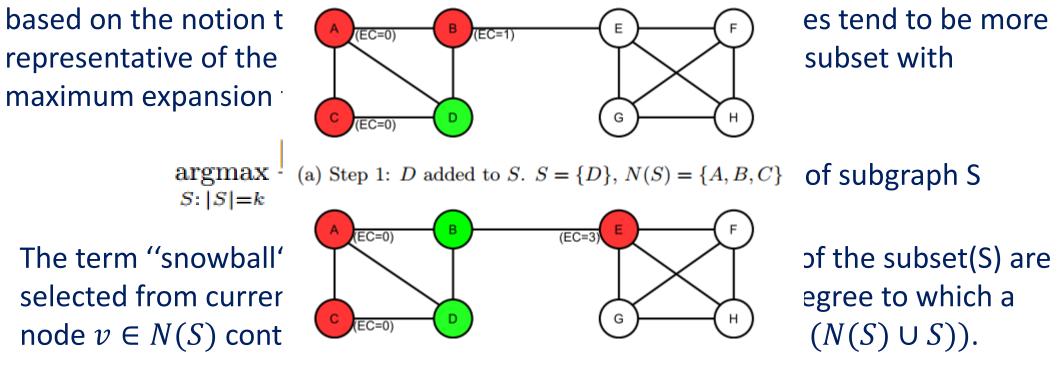


Related issues on Social Networks

- How to select a subset of nodes from a social network which retains the underlying community structure?
 The representative nodes should:
 1) Contain nodes from all or most of the communities
 2) if executing a community detection algorithm separately on both the sampled subgraph and the original network, we would like vertices
 - grouped together in the subgraph to be also grouped together in the larger network.

Some approaches:

Snowball Expansion sampling:



(b) Step 2: B added to S. $S = \{D, B\}, N(S) = \{A, C, E\}$

Some approaches:

• degree centrality based selection:

based on the notion that The nodes with high-degree centrality for each community are usually located at the center rather than the periphery and can better capture the community structure.

The algorithm can be divided into 3 steps:

- 1) Hub Selection: select the node v with highest degree centrality
- 2) Deactivation: deactivate the neighbors of v, and do not consider these nodes for selection

3) Reactivation: when there is no node being active, we reactivate all deactivated nodes.

Related issues on Social Networks

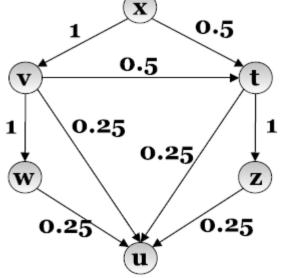
- 2 How to find a set of users in a social network, such that by targeting this set, one maximizes the expected spread of influence in the network.
 - For example:
 - 1) Viral marketing: by initially targeting a few influential members will trigger a cascade of adoption of the products.
 - 2) Epidemic diffusion: by immunize the key nodes, we can prevent a large scale epidemic.

influence maximization problem

Goal:

Given a directed graph G = (V,E, p), where nodes are users and edges are labeled with influence probabilities among users, the influence maximization problem asks for a *seed set* of users, that maximizes the *expected spread* of influence in the social network, under a given propagation model.

Here, we are mainly concerned about *Independent Cascade diffusion model*: when node v first becomes active in step t, it is given a single chance to active its inactive neighbor w, succeeding with a probability $p_{v,w}$.



greedy hill-climbing algorithm

Given a subset *S*, the expected spread with a diffusion model *m* is defined as :

$$\sigma_m(S) = \sum_{X \in \mathbb{G}} \Pr[X] \cdot \sigma_m^X(S)$$

Where $\sigma_m^X(S)$ is the number of nodes reachable from S in the possible world X.

Greedy algorithm:

start with the empty set, and repeatedly add an node x that gives the maximum marginal gain to the current set S:

$$\mathsf{x}= \arg\max_{w \in V-S} (\sigma_m(S+w) - \sigma_m(S))$$

greedy algorithm can be used because σ_m is:

1) submodular: $f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$ for any v and $S \subseteq T$. 2) *monotone:* $f(S \cup \{v\}) \ge f(S)$

Data-based credit distribution model

Given user action log data L(user, action, time), directly predict the influence spread of node sets, without any need for learning edge probabilities or conducting MC simulations.

$$\sigma_m(S) = \sum_{X \in \mathbb{G}} \Pr[X] \cdot \sigma_m^X(S) , \quad \sigma_m^X(S) = \sum_{u \in V} path_X(S, u)$$

$$\sigma_m(S) = \sum_{u \in V} \sum_{X \in \mathbb{G}} \Pr[X] path_X(S, u)$$

$$= \sum_{u \in V} E[path(S, u)] = \sum_{u \in V} \Pr[path(S, u) = 1]$$

To estimate Pr[path(S, u) = 1], we use the concept "Credit Distribution".

$$\sigma_{cd}(S) = \sum_{u \in V} \kappa_{S,u}$$

Using the action log L(user, action, time), we define the propagation graph of action a as directed graph G(a) = (V(a), E(a)), with $V(a) = \{v \in V \mid \exists t: (v, a, t) \in L\}$ and $E(a) = \{(u, v) \in E \mid t(u, a) < t(v, t)\}$. $N_{in}(u, a) = \{v \mid (v, u) \in E(a)$.

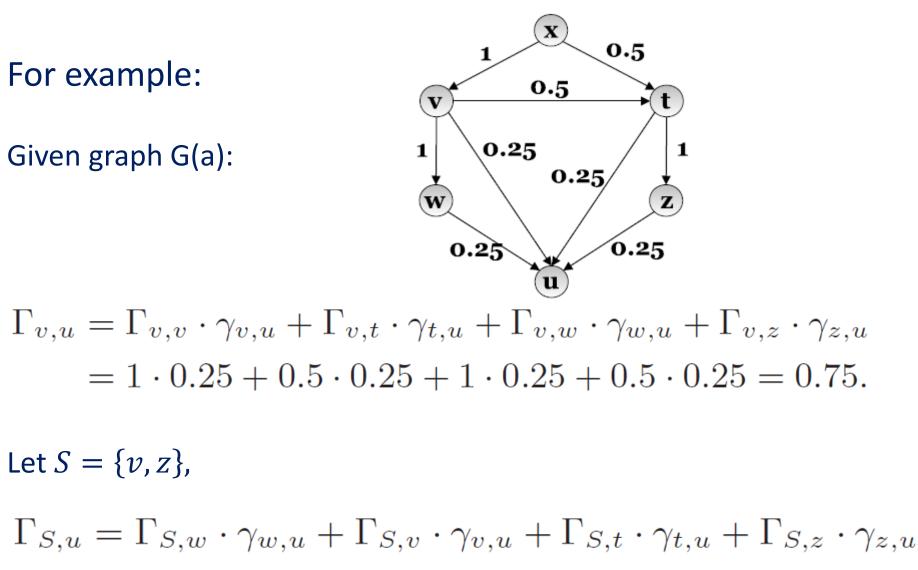
Credit Distribution: When a user u performs an action a, we give some **direct influence credit** $\gamma_{v,u}(a)$ (i.e. $\gamma_{v,u}(a) = 1/d_{in}(u,a)$) to its neighbor v in $N_{in}(u,a)$. Then user v in turn passes on the credit to its predecessors in G(a). So we define the **total credit** $\Gamma_{v,u}(a)$ given to a user v for influencing u on action a as:

$$\Gamma_{v,u}(a) = \sum_{w \in N_{\text{in}}(u,a)} \Gamma_{v,w}(a) \cdot \gamma_{w,u}(a) \text{ and } \Gamma_{v,v}(a) = 1$$

Then define the total credit given to a set of nodes S $\Gamma_{S,u}(a)$ as:

$$\Gamma_{S,u}(a) = \begin{cases} 1 & \text{if } v \in S;\\ \sum_{w \in N_{\text{in}}(u,a)} \Gamma_{S,w}(a) \cdot \gamma_{w,u}(a) & \text{otherwise} \end{cases}$$

Aggregates all actions, $\kappa_{S,u} = \frac{1}{A_u} \sum_{a \in A} \Gamma_{S,u}(a)$ corresponds to $\Pr[path(S,u)=1]$.



 $= 1 \cdot 0.25 + 1 \cdot 0.25 + 0.5 \cdot 0.25 + 1 \cdot 0.25 = 0.875.$

THANK YQU